Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption.

نویسندگان

  • S Djien Tan
  • Teun J de Vries
  • Anne Marie Kuijpers-Jagtman
  • Cornelis M Semeins
  • Vincent Everts
  • Jenneke Klein-Nulend
چکیده

Bone has the capacity to alter its mass and structure to its mechanical environment. Osteocytes are the predominant bone cells and it is generally accepted that the osteocytes are the professional mechanosensors of bone. A strain-derived fluid flow through the lacuno-canalicular porosity seems to mechanically activate them, resulting in the production of signalling molecules such as nitric oxide (NO). We hypothesize that mechanically stimulated osteocytes modulate osteoclast formation and activity via soluble factors, thus affecting bone resorption. Osteocytes, osteoblasts, and periosteal fibroblasts were isolated from fetal chicken calvariae via enzymatic digestion. The periosteal fibroblasts were obtained from the periostea. Osteocytes were separated from osteoblasts by immunomagnetic separation. Cells were mechanically stimulated for 1 h with pulsating fluid flow (PFF, 0.70 +/- 0.30 Pa) at 5 Hz, or kept under static conditions. Conditioned medium was collected after 60 min. The effect of conditioned medium on osteoclastogenesis was tested on mouse bone marrow cells in the presence of macrophage colony stimulating factor and receptor activator of NF-kappaB ligand. After 6 days of culture, osteoclast formation and bone resorption was determined. Osteocytes subjected to 1 h pulsating fluid flow produced conditioned medium that inhibited the formation of osteoclasts. For osteoblast PFF-conditioned medium, such effect was, to a lesser extent, also observed, but not for periosteal fibroblast PFF-conditioned medium. Furthermore, PFF-treated osteocytes, but not osteoblast or periosteal fibroblast, produced conditioned medium that resulted in a decreased bone resorption. The NO synthase inhibitor N(G)-nitro-L-arginine methyl ester attenuated the inhibitory effects of osteocyte PFF-conditioned medium on osteoclast formation and resorption. We conclude that osteocytes subjected to PFF inhibit osteoclast formation and resorption via soluble factors, and the release of these factors was at least partially dependent on activation of an NO pathway in osteocytes in response to PFF. Thus, the osteocyte appears to be more responsive to PFF than the osteoblast or periosteal fibroblast regarding to the production of soluble factors affecting osteoclast formation and bone resorption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading.

Bone has the ability to adjust its structure to meet its mechanical environment. The prevailing view of bone mechanobiology is that osteocytes are responsible for detecting and responding to mechanical loading and initiating the bone adaptation process. However, how osteocytes signal effector cells and initiate bone turnover is not well understood. Recent in vitro studies have shown that osteoc...

متن کامل

Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts.

Osteocytes are well evidenced to be the major mechanosensor in bone, responsible for sending signals to the effector cells (osteoblasts and osteoclasts) that carry out bone formation and resorption. Consistent with this hypothesis, it has been shown that osteocytes release various soluble factors (e.g. transforming growth factor-beta, nitric oxide, and prostaglandins) that influence osteoblasti...

متن کامل

Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation.

Connexin 43 (Cx43) mediates osteocyte communication with other cells and with the extracellular milieu and regulates osteoblastic cell signaling and gene expression. We now report that mice lacking Cx43 in osteoblasts/osteocytes or only in osteocytes (Cx43(ΔOt) mice) exhibit increased osteocyte apoptosis, endocortical resorption, and periosteal bone formation, resulting in higher marrow cavity ...

متن کامل

Biological underpinnings of Frost's mechanostat thresholds: the important role of osteocytes.

Harold Frost first proposed the existence of several mechanical thresholds in bone, two of which determine whether bone is added to, or lost from, the skeleton. Recent evidence from bone biology helps elucidate the role of osteocytes in determining these mechanical thresholds. Specifically, when mechanical stimuli fall below the resorption threshold, osteocyte apoptosis occurs, followed by bone...

متن کامل

Unfractionated Heparin Promotes Osteoclast Formation in Vitro by Inhibiting Osteoprotegerin Activity.

Heparin has been proven to enhance bone resorption and induce bone loss. Since osteoclasts play a pivotal role in bone resorption, the effect of heparin on osteoclastogenesis needs to be clarified. Since osteocytes are the key modulator during osteoclastogenesis, we evaluated heparin's effect on osteoclastogenesis in vitro by co-culturing an osteocyte cell line (MLO-Y4) and pre-osteoclasts (RAW...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bone

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2007